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THRESHOLD TEAR STRENGTH OF ELASTOMERS
oy
A. N. Gent and R. H. Tobias
Institute of Polymer Science
The University of Akron, Akron, Ohio 44325

Introduction

The tear strength of an elastomeric material has been
shown to reach a lower limit, termed here the threshold
strength, when dissipative processes are minimized (1,2).
The threshold value can be determined experimentally at low
rates of tearing, at high temperatures, and when the
materiazl is highly swollen with a low-viscosity liquid.
Under these near equilibrium conditions, experimental tear
strengths are found to reach minimum values of 40-80 J/m2
(1,2). Lake and Thomas (3) have developed a simple theoret-
ical treatment to predict the magnitude of the threshold
tear strength for elastomers from the length of the molecu-
lar strands comprising a network and the dissociation energy
of the chemical bonds comprising each strand. Expressed as
the energy To required to tear through a unit area of
the materiaIT their theoretical rasult is
7, = me /2 (1)

o
where Hc is the mean molecular weight of the network
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strands and K is a constant involving the effective mass,
length and flexibility of a single main-~chain bond, the den-
sity of the polymer and the dissociation energy of the
weakest bond. For C-C molecular strands K is predicted to
be about 0.3 J/m?/(molecular weight unit) /2, Experimen-
tal values of To for randomly crosslinked networks of
polybutadiene ;;re found to be consistent with equation 1
when K was given a somewhat higher value, about 1.0
J/mz/(molecular weight unit)l/z. Apart from this
numerical discrepancy, the threshold strength of polybuta-
diene networks seems to be reasonably well accounted for (2).
Measurements have now been carried out on a number of
elastomers, of widely differing chemical constitution. They
are: cis-polyisoprene (cis-PI), trans-polyisoprene
(trans-PI), polydimethylsiloxane (PDMS) and a fluoroalkoxy-
substituted polyphosphazene (PNF). 1In each case, networks
were made of a wide range of strand lengths, by a random
crosslinking process, and the threshold tear strengths deter-
mined by careful measurements at high temperatures and low
rates of tearing. Tear strengths were also measured for sam-
ples swollen highly with low~viscosity fluids, for compari-
son with the results obtained with unswollen materials. The

results are given in the following sections of this paper

and compared with the predictions of the Lake-Thomas theory.
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3
A brief outline of the Lake-Thomas theory is now given,
in order to draw attention to the main molecular parameters
which appear in the coefficient K relating the threshold
tear strength to Mc in eguation 1. It is assumed that a
number N’ of netw;;k strands pass through a randomly-chosen
fracture plane of unit area and that this number must be
broken for the fracture to propagate. The work required to
break them is Tqye Each strand is regarded as of uniform
length, compos;E of n main-chain atoms, each with an associated
average molecular weight of M. Thus, the molecular weight M, of a strand
is given by nM_, and its dig;ociation energy by nU w;;re U is
the dissociation energy of a main-chain bond. Hence,
To = N’ MOU : (2)
In order to determine the number N’ of strands crossing
the fracture plane in terms of the number N of network strands
per unit volume, it is assumed that only those strands lying
within a volume element defined by the fracture plane itself
and a perpendicular distance R, equal to the r.m.s. distance
between strand ends in the undeformed state, need to be
considered. Furthermore, only about one-third of these strands
will actually cross the fracture plane. The other two-thirds
will lie generally parallel to the plane and hence escape
£racture. Thus,

N’( = NR/3) =1/3 (p A/MIR

where ° is the density of the polymer and A is Avogadro's number.

A more precise coﬁputation of N’ yields a numerical factor of

(3/8)2/2 in place of 1/3(3).
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1/2

The distance R is given by n.""“1 ., where n. is the

x
number of links in a hypothetical chain of freez;;jointed

links chosen to have the same value of R and fully-stretched
length L as the "real"” chain of n main-chain bonds, each of
projected length 1 (4). Typically, the length 1r of an
equivalent freely-jointed link is several main-;;ain bonds and,
correspondingly, the number n. of random links in the equiva-

lent chain is several times smaller than the number n of bonds.

The parameter q = lr/l = n/nr is a measure of chain stiffness.

Estimates of g can be obtained from measurements of the stress-
optical coefficient (4); they range from 5-10 main-chain
bonds for various elastomer polymers.

On substituting in equation 2 for N/, T, is finally

obtained as

1/2 1/2 py 3/2

P AUql/ZIMc o

T, = (3/8)

The coefficient K in equation 1 is thus given by
K = (3/8)1/2 o augt/2im /2,

(3)
Values of K calculated from eguation 3 are compared with
experimentally-determined values in the final section of this

paper.




Experimental details

(a) Materials
(1) Cis-polyisoprene (cis-PI) and trans-polyisoprene
(trans-PI)

Samples of 96% cis-1l,4 - polyisoprene (Natsyn 2200,
Goodyear Tire and Rubber Company) and trans 1,4 - polyisoprene
(Trans-Pip, Polysar Inc.) were mixed with various amounts of
dicumyl peroxide (DiCup R, Hercules Chemical Company). They
were then pressed into sheets, about 1.5 mm thick, and cross-
linked by heating them for 2 hr at 150°c. similar samples
were also prepared from 100% cis 1,4 - polyisoprene(hatural
rubber, SMR-SL) but, as described later, it was not found
possible to determine the threshold tear strength for these
samples with comparable precision when the degree of cross-
linking was low.

(ii) Polybutadienes

Samples of ¢cis 1,4 - polybutadiene (Cis - 4, Phillips
Petroleum Company) and a cis: trans: vinyl copolymer (36:54:10,
Diene 35 NFA, Firestone Tire and Rubber Company) have been
examined previously (2). The results are included here for
comparison with those obtained for other elastomeric materials.

(iii) Polydimethylsiloxane (PDMS)

This polymer was supplied by General Electric Company.

The number-average molecular weight ﬁn was 430,000 g/g-mole.

B
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It was also mixed with various amounts of dicumyl peroxide
and crosslinked by heating for 2 h at 150°¢.

(iv) Fluorocalkoxy-substituted polyphosphazene (PNF)

Polyphosphazene (Phosphonitrilic Fluworoelastomer PNF-200,
Firestone Tire and Rubber Company) was mixed with various
amounts of dicumyl peroxide (DiCup R, Hercules Chemical Com-
pany) and crosslinked by heating for 2 h at 150°c.

(i) Measurement of network strand molecular weight Mc

Values of the Mooney-Rivlin elastic coefficients <,

and C, were determined from stress-strain relations in tension
(4),—Eetermined at ambient temperature. The values obtained
are given in Table 1, together with corresponding values of
the small-strain elastic modulus (Young's modulus)

E =6 (cl + Cz). The extensibility of the PNF materials was

too small to perﬁit an accurate determination of C1 and Cz.
Values of E were obtained in these cases from the initial
slopes of the stress-strain relations.

According to the statistical theory of rubberlike elastic-
ity, E is directly related to the average network strand
molecular weight M, 4),

- E = 3(R'I'/Mc (4)
where ¢ is the density of the elastomer, R is the gas constant
and T I; absolute temperature. Values of Mc calculated by
means of equation 4 are given in Table 1. ——

The exact relationship between the chemical structure

of the network and the elastically-effective strand population

is still subject to debate. It has been assumed here that
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those network strands that govern the small-strain elastic
behavior are also responsible for the tear strength under
threshold conditions, so that values of M, calculated from
equation 4 are appropriately employed in—;quation 1. This
assumption ignores the non-Gaussian behavior of rubber materials.
It has been claimed that the Cl term is directly proportional

to the density of network str;;ds and that the non-Gaussian

c, term arises from constraints on their elastic response

;;ich become less important at high strains. From this point

of view, it would be more appropriate to calculate Mc from Cl'

— —

c, = ORT/ZMC

1
for comparison with tear strengths, which are inevitably
associated with high strains. Had the elastic coefficient
C, been used instead of E for calculating M, the values
;;tained would have been generally about t;;ce as large and
values of the constant K from equation 1 would then have been
about 30% lower than those discussed below. The general form
of the results and the relative rankings of the different
elastomers would not have been altered, however.

(vi) Measurement of threshold tear strength

Rectangular strips, about 60 mm long, 10 mm wide and
1.4 mm thick were scored along a central line to a depth of
about 0.7 mm, leaving about one-half of the original thick-

ness to be torn through. Tearing was generally found to

take place at an angle of approximately 45° to the sheet




thickness, as shown schematically in Figure 1. The tear
energy T was calculated from the measured tear force F by
the relation (1, 2)

T=2,%F/t (5)
where Ag is the linear swelling ratio of the sample and t is
the wiE:h of the tear path, measured on the torn strip after
tearing was completed. The term Asz in equation 5 accounts

for the reduced number of network strands crossing the tear

plane in a swollen specimen. For unswollen samples, Ag™ 1.

The swelling liquids used were m~xylene or paraffin oil
with PI and PB networks, m-xylene or silicone oil with PDMS
networks, and dibutyl sebacate with PNF networks. Samples
were torn while immersed in a water bath, at temperatures
between 70°C and 90°C. The water effectively prevented
evaporation of the swelling liquid during tearing.

For natural rubber samples swollen with paraffin oil
it was found necessary to use much higher test temperatures,
in the range 90% - 180°c, in order to approach a lower
limit in tear strength. For the lightly-crosslinked materials
the tear strength did not reach a lower limit even at temp-
eratures of 150°C, Figure 2, and at temperatures much above
this, rapid deterioration occurred. It is thought that
strain-induced crystallization was present, even at high
temperatures and in the swollen state, strengthening these

materials in comparison with wholly-amorphous elastomers.
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Swollen samples of cis-PI containing about 96% cis units
were found to reach well-defined threshold values at approxi-
mately 140°C. Presumably the somewhat smaller cis content
reduced the tendency to crystallize on stretching, so that
these materials were completely amorphous during tearing
at 140°C and above.

Good agreement was obtained between values of T determined
with swollen and unswollen samples, provided that sufficiently
high test temperatures were used. Some representative results
for PDMS materials are given in Table 2. Mean values of T
for swollen and unswollen materials have been taken as measures
of the threshold tear strength To. They are given in Table 1

for all of the materials examined.
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Experimental results and discussion

Experimentally~determined values of the threshold tear
strength To are plotted against the elastic modulus E in
Figure 3 ;;d against corresponding values of Mc in Figure 4,
using logarithmic scales for both axes. The ;;sults are in
reasonably good agreement with linear relations in all cases,
with slopes of -1/2 when plotted against E and +1/2 when
plotted against Mc. Thus, the general form of the results
is in good agree;;nt with the theory of Lake and Thomas (3).

It is noteworthy that at similar values of E, the thresh-
old tear strength of the hydrocarbon elastomers are all rather
similar in magnitude but they are much larger than for PDMS
and PNF, by a factor of about three. Marked differences are
also shown at similar values of Mc’ Figure 4, by a factor of
about three for PDMS and about f;;e for PNF. These differ-
ences are attributed to differences in the molecular constants
which govern the coefficient K relating the threshold tear
strength to Mc. Estimated values of the various molecular
constants af;—listed in Table 3, together with the values of
K calculated from them by means of equation 3. Experimentally-
determined values of K, taken from the linear relations for
each elastomer shown in Figure 4, are included in Table 3 for
comparison with theoretically-derived results.

The agreement is reasonably good, both in absolute

magnitude and in the relative ranking of the various elastomers.
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As there are no fitting constants in the theory, this agree-
ment must be regarded as quite satisfactory and indicates
that the main molecular parameters governing the tear strength
of elastomers under threshold conditions have been taken
into account.

The large effect of the mass per main-chain atom is
particularly noteworthy. It appears to be the principal factor
responsible for the striking differences between the tear
strengths of the hydrocarbon elastomers, PI and PB, and those

of the inorganic elastomers, PDMS and PNF.
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Table 1. Threshold tear strength To of molecular networks
with varying Mc
) _3(a) 2
Dicumyl cy c, E M _x10 T (3/m")
peroxide c o
(%) (kPa) (kPa) (kPa) (g/g-mole)
NR
1 95 73 1010 6.7 ca 150
2 182 63 1470 4.6 ca 90
3 254 83 2020 3.3 62 £ 7
4 337 68 2430 2.8 52 =+ 5
5 424 122 3275 2.1 43 + 3
cis-PI
1 121 71 1150 5.8 108 + 9
2 197 78 1650 4.1 63 + 4
4 387 48 2610 2.6 51 £ 5
trans-P1
2 155 132 1720 4.8 60 + 5
3 228 91 1915 4.3 48 = 4
4 384 63 2680 3.1 38+ 5
cis-PB(b)
0.5 182 174 2135 3.1 81 + 8
2.0 455 160 3690 1.8 58 + 8§
EE(b)
0.025 44 148 1150 5.8 78 + 8
0.05 110 148 1550 4.3 71 + 9
0.2 332 148 2880 2.3 45 + 5
0.4 570 145 4290 1.6 40 + 6
PDMS
1.0 9 20 175 41.0 78 £ 6
1.2 14 23 220 32.2 74 £ 3
1.5 19 29 290 24.8 62 + 3
1.75 21 30 305 23.3 56 £ 3
2.0 26 31 340 20.9 48 = 3
2.5 31 31 370 19.2 46 * 2
2.75 32 35 400 17.8 44 + 3
3.0 36 33 415 17.2 42 £ 3
4.0 45 25 420 17.0 39 £ 2
ENE
0.5 225 56 55 + 8
1.0 340 37 45 = 5
1.5 365 34 41 + 5
2.0(c) 395 32 40 £ 4
3.2 435 29 38 &t 4
:Calculated from E using equation 4.
Taken from reference 2.
2% Vul-Cup R (Hercules, Inc.), equivalent to 3.2% dicumyl peroxide.




Table 2. Effect of swelling with m-xylene on the threshold tear
strength of PDMS networks

. 2
Dicumyl To (Unswollen) 7\5 Ty (Swollen) As T, (Swollen)

pergride (3/m2) (3/mP) (a/m%)
1.0 89 + 8 2.22  17.2+ 1.7 85 + 10
1.2 79+ 5 1.94  19.8 + 2.0 75+ 8
1.5 62 + 5 .91  17.3+1.6 63+ 7
1.75 55 + 3 .88 17.0 + 2.3 60+ 9
2.0 49 + 4 .82 16.1+2.2 53+ 8
2.5 a6 + 4 .80 15.2 £ 1.7 9+ 6
2.75 44 + 3 .78 14.9 + 2.0 47 + 7
3.0 43 + 3 .77 14.0 + 2.3 4+ 8
4.0 40 +3 .75 13.4+1.5 a+ s
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Table 3. Theoretical and experimental values of the coefficient X

172

(J/mzl(molecular weight) ) in equation 1

K
(calc.
] 19 @ ) from

3 Ux1lo0 1/2 1 (g/g- equa- K
Elastomer (kg/m”) (J) g (nm) mole) tion 3) (expt.)
PR 910 5.75 1.63® ¢.115 13.5 0.73  1.15
trans-PI 940 5.75 1.84®) 0,127 17 0.67  0.78
cis-PI 920 5.75 1.32® g 115 17 0.43  1.05
PDMS 970 6.10 2.5 €} o.143 37 0.31  0.35
PNF 1,700 3.50 cas (©) o.160 185 0.07  0.22

2 From R. T. Sanderson, "Chemical Bonds and Bond Energy,"

Academic Press, Inc., New York, 1971

b From reference 4.

€ Estimated values.
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FIGURE LEGENDS

Method of measuring tear strength.

Tear strength T of natural rubber samples crosslinked with variocus
amounts of dicumyl peroxide and swollen with paraffin oil.

Threshold tear strength To of various elastomers vs Young's modulus
E. 1, PB (4); 2, gs:n—(-o) and NR (0); 3, trans-PI (®); 4,

PoMs (QQ); 5, PNF (W),

Threshold tear strength T, of various elastomers vs molecular weight
Mc of network strands cal-c-ulated from Young's modulus E by means of
;q:uati.on 4. Symbols as for Figure 3: 1, PB (4); 2, cis-PI () and
NR (0); 3, trans-PI (@); 4, POMS (OJ); S5, PNF (M.
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